Abstract
The paper presents View VULMA, a data set specifically designed for training machine-learning tools for elaborating fast vulnerability analysis of existing buildings. Such tools require supervised training via an extensive set of building imagery, for which several typological parameters should be defined, with a proper label assigned to each sample on a per-parameter basis. Thus, it is clear how defining an adequate training data set plays a key role, and several aspects should be considered, such as data availability, preprocessing, augmentation and balancing according to the selected labels. In this paper, we highlight all these issues, describing the pursued strategies to elaborate a reliable data set. In particular, a detailed description of both requirements (e.g., scale and resolution of images, evaluation parameters and data heterogeneity) and the steps followed to define View VULMA are provided, starting from the data assessment (which allowed to reduce the initial sample of about 20.000 images to a subset of about 3.000 pictures), to achieve the goal of training a transfer-learning-based automated tool for fast estimation of the vulnerability of existing buildings from single pictures.
Subject
Information Systems and Management,Computer Science Applications,Information Systems
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献