Coarse–Fine Combined Bridge Crack Detection Based on Deep Learning

Author:

Ma Kaifeng1,Hao Mengshu1,Meng Xiang1,Liu Jinping1ORCID,Meng Junzhen1,Xuan Yabing1

Affiliation:

1. College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Abstract

The crack detection of concrete bridges is an important link in the safety evaluation of bridge structures, and the rapid and accurate identification and detection of bridge cracks is a prerequisite for ensuring the safety and long-term stable use of bridges. To solve the incomplete crack detection and segmentation caused by the complex background and small proportion in the actual bridge crack images, this paper proposes a coarse–fine combined bridge crack detection method of “double detection + single segmentation” based on deep learning. To validate the effect and practicality of fine crack detection, images of old civil bridges and viaduct bridges against a complex background and images of a bridge crack against a simple background are used as datasets. You Only Look Once V5(x) (YOLOV5(x)) was preferred as the object detection network model (ODNM) to perform initial and fine detection of bridge cracks, respectively. Using U-Net as the optimal semantic segmentation network model (SSNM), the crack detection results are accurately segmented for fine crack detection. The test results showed that the initial crack detection using YOLOV5(x) was more comprehensive and preserved the original shape of bridge cracks. Second, based on the initial detection, YOLOV5(x) was adopted for fine crack detection, which can determine the location and shape of cracks more carefully and accurately. Finally, the U-Net model was used to segment the accurately detected cracks and achieved a maximum accuracy (AC) value of 98.37%. The experiment verifies the effectiveness and accuracy of this method, which not only provides a faster and more accurate method for fine detection of bridge cracks but also provides technical support for future automated detection and preventive maintenance of bridge structures and has practical value for bridge crack detection engineering.

Funder

Henan Provincial Science and Technology Research Project

Publisher

MDPI AG

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3