A Novel Point Cloud Encoding Method Based on Local Information for 3D Classification and Segmentation

Author:

Song Yanan,Gao LiangORCID,Li Xinyu,Shen WeimingORCID

Abstract

Deep learning is robust to the perturbation of a point cloud, which is an important data form in the Internet of Things. However, it cannot effectively capture the local information of the point cloud and recognize the fine-grained features of an object. Different levels of features in the deep learning network are integrated to obtain local information, but this strategy increases network complexity. This paper proposes an effective point cloud encoding method that facilitates the deep learning network to utilize the local information. An axis-aligned cube is used to search for a local region that represents the local information. All of the points in the local region are available to construct the feature representation of each point. These feature representations are then input to a deep learning network. Two well-known datasets, ModelNet40 shape classification benchmark and Stanford 3D Indoor Semantics Dataset, are used to test the performance of the proposed method. Compared with other methods with complicated structures, the proposed method with only a simple deep learning network, can achieve a higher accuracy in 3D object classification and semantic segmentation.

Funder

National Key Research and Development Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3