An adaptive locally-coded point cloud classification and segmentation network coupled with genetic algorithm

Author:

Ma Qihang1,Zhang Jian1,Zhang Jiahao1

Affiliation:

1. School of Mechanical Engineering, Tongji University, Shanghai, China

Abstract

Local information coding helps capture the fine-grained features of the point cloud. The point cloud coding mechanism should be applicable to the point cloud data in different formats. However, the local features of the point cloud are directly affected by the attributes, size and scale of the object. This paper proposes an Adaptive Locally-Coded point cloud classification and segmentation Network coupled with Genetic Algorithm(ALCN-GA), which can automatically adjust the size of search cube to complete network training. ALCN-GA can adapt to the features of 3D data at different points, whose adjustment mechanism is realized by designing a robust crossover and mutation strategy. The proposed method is tested on the ModelNet40 dataset and S3DIS dataset. Respectively, the overall accuracy and average accuracy is 89.5% and 86.5% in classification, and overall accuracy and mIoU of segmentation is 80.34% and 51.05%. Compared with PointNet, average accuracy in classification and mIoU of segmentation is improved about 10% and 11% severally.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference36 articles.

1. 3d semantic parsing of large-scale indoor spaces;Armeni;2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016

2. Gchar: An efficient group-based context—aware human activity recognition on smartphone;Cao;Journal of Parallel and Distributed Computing,2018

3. Pointnet: Deep learning on point sets for 3d classification and segmentation;Charles;2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017

4. Pra-net: Point relation-aware network for 3d point cloud analysis;Cheng;IEEE Transactions on Image Processing,2021

5. Scannet: Richly-annotated 3d reconstructions of indoor scenes;Dai;2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3