The Segmentation Method of Target Point Cloud for Polarization-Modulated 3D Imaging

Author:

Wang Shengjie,Liu Bo,Chen Zhen,Li Heping,Jiang Shuo

Abstract

To implement target point cloud segmentation for a polarization-modulated 3D imaging system in practical projects, an efficient segmentation concept of multi-dimensional information fusion is designed. As the electron multiplier charge coupled device (EMCCD) camera can only acquire the gray image, but has no ability for time resolution owing to the time integration mechanism, large diameter electro-optic modulators (EOM) are used to provide time resolution for the EMCCD cameras to obtain the polarization-modulated images, from which a 3D image can also be simultaneously reconstructed. According to the characteristics of the EMCCD camera’s plane array imaging, the point-to-point mapping relationship between the gray image pixels and point cloud data coordinates is established. The target’s pixel coordinate position obtained by image segmentation is mapped to 3D point cloud data to get the segmented target point cloud data. On the basis of the specific environment characteristics of the experiment, the maximum entropy test method is applied to the target segmentation of the gray image, and the image morphological erosion algorithm is used to improve the segmentation accuracy. This method solves the problem that conventional point clouds’ segmentation methods cannot effectively segment irregular objects or closely bound objects. Meanwhile, it has strong robustness and stability in the presence of noise, and reduces the computational complexity and data volume. The experimental results show that this method is better for the segmentation of the target in the actual environment, and can avoid the over-segmentation and under-segmentation to some extent. This paper illustrates the potential and feasibility of the segmentation method based on this system in real-time data processing.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3