Energy-Efficient Multi-UAVs Cooperative Trajectory Optimization for Communication Coverage: An MADRL Approach

Author:

Ao Tianyong,Zhang Kaixin,Shi Huaguang,Jin Zhanqi,Zhou Yi,Liu Fuqiang

Abstract

Unmanned Aerial Vehicles (UAVs) can be deployed as aerial wireless base stations which dynamically cover the wireless communication networks for Ground Users (GUs). The most challenging problem is how to control multi-UAVs to achieve on-demand coverage of wireless communication networks while maintaining connectivity among them. In this paper, the cooperative trajectory optimization of UAVs is studied to maximize the communication efficiency in the dynamic deployment of UAVs for emergency communication scenarios. We transform the problem into a Markov game problem and propose a distributed trajectory optimization algorithm, Double-Stream Attention multi-agent Actor-Critic (DSAAC), based on Multi-Agent Deep Reinforcement Learning (MADRL). The throughput, safety distance, and power consumption of UAVs are comprehensively taken into account for designing a practical reward function. For complex emergency communication scenarios, we design a double data stream network structure that provides a capacity for the Actor network to process state changes. Thus, UAVs can sense the movement trends of the GUs as well as other UAVs. To establish effective cooperation strategies for UAVs, we develop a hierarchical multi-head attention encoder in the Critic network. This encoder can reduce the redundant information through the attention mechanism, which resolves the problem of the curse of dimensionality as the number of both UAVs and GUs increases. We construct a simulation environment for emergency networks with multi-UAVs and compare the effects of the different numbers of GUs and UAVs on algorithms. The DSAAC algorithm improves communication efficiency by 56.7%, throughput by 71.2%, energy saving by 19.8%, and reduces the number of crashes by 57.7%.

Funder

National Natural Science Foundation of China

the Program for Science & Technology Development of Henan Province

the Young Elite Scientist Sponsorship Program by Henan Association for Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Drones Energy Efficient Based Path Planning Optimization using Genetic Algorithm and Gradient Decent Approach;2024 9th International Conference on Mechatronics Engineering (ICOM);2024-08-13

2. Optimizing Drone Energy Use for Emergency Communications in Disasters via Deep Reinforcement Learning;Future Internet;2024-07-11

3. Dynamic Multi-UAV Path Planning for Multi-Target Search and Connectivity;IEEE Transactions on Vehicular Technology;2024-07

4. Human skill knowledge guided global trajectory policy reinforcement learning method;Frontiers in Neurorobotics;2024-03-15

5. Cooperative Completing Tasks of Charging WRSNs with Multiple MUVs and Laser-charged UAVs;2023 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3