Optimizing Drone Energy Use for Emergency Communications in Disasters via Deep Reinforcement Learning

Author:

Qiu Wen1ORCID,Shao Xun2ORCID,Masui Hiroshi1,Liu William3

Affiliation:

1. Information Processing Center, Kitami Institute of Technology, Kitami 090-8507, Japan

2. Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan

3. Department of Information Technology and Software Engineering, School of Engineering, Computer and Mathematical Sciences, Unitec Institute of Technology, Auckland 1025, New Zealand

Abstract

For a communication control system in a disaster area where drones (also called unmanned aerial vehicles (UAVs)) are used as aerial base stations (ABSs), the reliability of communication is a key challenge for drones to provide emergency communication services. However, the effective configuration of UAVs remains a major challenge due to limitations in their communication range and energy capacity. In addition, the relatively high cost of drones and the issue of mutual communication interference make it impractical to deploy an unlimited number of drones in a given area. To maximize the communication services provided by a limited number of drones to the ground user equipment (UE) within a certain time frame while minimizing the drone energy consumption, we propose a multi-agent proximal policy optimization (MAPPO) algorithm. Considering the dynamic nature of the environment, we analyze diverse observation data structures and design novel objective functions to enhance the drone performance. We find that, when drone energy consumption is used as a penalty term in the objective function, the drones—acting as agents—can identify the optimal trajectory that maximizes the UE coverage while minimizing the energy consumption. At the same time, the experimental results reveal that, without considering the machine computing power required for training and convergence time, the proposed key algorithm demonstrates better performance in communication coverage and energy saving as compared with other methods. The average coverage performance is 10–45% higher than that of the other three methods, and it can save up to 3% more energy.

Funder

JSPS KAKENHI

Support Center for Advanced Telecommunications Technology Research, Japan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3