Human skill knowledge guided global trajectory policy reinforcement learning method

Author:

Zang Yajing,Wang Pengfei,Zha Fusheng,Guo Wei,Li Chuanfeng,Sun Lining

Abstract

Traditional trajectory learning methods based on Imitation Learning (IL) only learn the existing trajectory knowledge from human demonstration. In this way, it can not adapt the trajectory knowledge to the task environment by interacting with the environment and fine-tuning the policy. To address this problem, a global trajectory learning method which combinines IL with Reinforcement Learning (RL) to adapt the knowledge policy to the environment is proposed. In this paper, IL is proposed to acquire basic trajectory skills, and then learns the agent will explore and exploit more policy which is applicable to the current environment by RL. The basic trajectory skills include the knowledge policy and the time stage information in the whole task space to help learn the time series of the trajectory, and are used to guide the subsequent RL process. Notably, neural networks are not used to model the action policy and the Q value of RL during the RL process. Instead, they are sampled and updated in the whole task space and then transferred to the networks after the RL process through Behavior Cloning (BC) to get continuous and smooth global trajectory policy. The feasibility and the effectiveness of the method was validated in a custom Gym environment of a flower drawing task. And then, we executed the learned policy in the real-world robot drawing experiment.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3