Improved Neural Network with Spatial Pyramid Pooling and Online Datasets Preprocessing for Underwater Target Detection Based on Side Scan Sonar Imagery

Author:

Li Jinrui,Chen Libin,Shen JianORCID,Xiao XiongwuORCID,Liu Xiaosong,Sun Xin,Wang Xiao,Li Deren

Abstract

Fast and high-accuracy detection of underwater targets based on side scan sonar images has great potential for marine fisheries, underwater security, marine mapping, underwater engineering and other applications. The following problems, however, must be addressed when using low-resolution side scan sonar images for underwater target detection: (1) the detection performance is limited due to the restriction on the input of multi-scale images; (2) the widely used deep learning algorithms have a low detection effect due to their complex convolution layer structures; (3) the detection performance is limited due to insufficient model complexity in training process; and (4) the number of samples is not enough because of the bad dataset preprocessing methods. To solve these problems, an improved neural network for underwater target detection—which is based on side scan sonar images and fully utilizes spatial pyramid pooling and online dataset preprocessing based on the You Look Only Once version three (YOLO V3) algorithm—is proposed. The methodology of the proposed approach is as follows: (1) the AlexNet, GoogleNet, VGGNet and the ResNet networks and an adopted YOLO V3 algorithm were the backbone networks. The structure of the YOLO V3 model is more mature and compact and has higher target detection accuracy and better detection efficiency than the other models; (2) spatial pyramid pooling was added at the end of the convolution layer to improve detection performance. Spatial pyramid pooling breaks the scale restrictions when inputting images to improve feature extraction because spatial pyramid pooling enables the backbone network to learn faster at high accuracy; and (3) online dataset preprocessing based on YOLO V3 with spatial pyramid pooling increases the number of samples and improves the complexity of the model to further improve detection process performance. Three-side scan imagery datasets were used for training and were tested in experiments. The quantitative evaluation using Accuracy, Recall, Precision, mAP and F1-Score metrics indicates that: for the AlexNet, GoogleNet, VGGNet and ResNet algorithms, when spatial pyramid pooling is added to their backbone networks, the average detection accuracy of the three sets of data was improved by 2%, 4%, 2% and 2%, respectively, as compared to their original formulations. Compared with the original YOLO V3 model, the proposed ODP+YOLO V3+SPP underwater target detection algorithm model has improved detection performance through the mAP qualitative evaluation index has increased by 6%, the Precision qualitative evaluation index has increased by 13%, and the detection efficiency has increased by 9.34%. These demonstrate that adding spatial pyramid pooling and online dataset preprocessing can improve the target detection accuracy of these commonly used algorithms. The proposed, improved neural network with spatial pyramid pooling and online dataset preprocessing based on the YOLO V3 method achieves the highest scores for underwater target detection results for sunken ships, fish flocks and seafloor topography, with mAP scores of 98%, 91% and 96% for the above three kinds of datasets, respectively.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province, China

Key Research and Development Project of Jinzhong City, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3