Quad-FPN: A Novel Quad Feature Pyramid Network for SAR Ship Detection

Author:

Zhang Tianwen,Zhang Xiaoling,Ke Xiao

Abstract

Ship detection from synthetic aperture radar (SAR) imagery is a fundamental and significant marine mission. It plays an important role in marine traffic control, marine fishery management, and marine rescue. Nevertheless, there are still some challenges hindering accuracy improvements of SAR ship detection, e.g., complex background interferences, multi-scale ship feature differences, and indistinctive small ship features. Therefore, to address these problems, a novel quad feature pyramid network (Quad-FPN) is proposed for SAR ship detection in this paper. Quad-FPN consists of four unique FPNs, i.e., a DEformable COnvolutional FPN (DE-CO-FPN), a Content-Aware Feature Reassembly FPN (CA-FR-FPN), a Path Aggregation Space Attention FPN (PA-SA-FPN), and a Balance Scale Global Attention FPN (BS-GA-FPN). To confirm the effectiveness of each FPN, extensive ablation studies are conducted. We conduct experiments on five open SAR ship detection datasets, i.e., SAR ship detection dataset (SSDD), Gaofen-SSDD, Sentinel-SSDD, SAR-Ship-Dataset, and high-resolution SAR images dataset (HRSID). Qualitative and quantitative experimental results jointly reveal Quad-FPN’s optimal SAR ship detection performance compared with the other 12 competitive state-of-the-art convolutional neural network (CNN)-based SAR ship detectors. To confirm the excellent migration application capability of Quad-FPN, the actual ship detection in another two large-scene Sentinel-1 SAR images is conducted. Their satisfactory detection results indicate the practical application value of Quad-FPN in marine surveillance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3