DA-YOLOv7: A Deep Learning-Driven High-Performance Underwater Sonar Image Target Recognition Model

Author:

Chen Zhe12,Xie Guohao123,Deng Xiaofang12,Peng Jie12,Qiu Hongbing12

Affiliation:

1. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China

2. Cognitive Radio and Information Processing Key Laboratory Authorized by China’s Ministry of Education Foundation, Guilin University of Electronic Technology, Guilin 541004, China

3. School of Ocean Engineering, Guilin University of Electronic Technology, Beihai 536000, China

Abstract

Affected by the complex underwater environment and the limitations of low-resolution sonar image data and small sample sizes, traditional image recognition algorithms have difficulties achieving accurate sonar image recognition. The research builds on YOLOv7 and devises an innovative fast recognition model designed explicitly for sonar images, namely the Dual Attention Mechanism YOLOv7 model (DA-YOLOv7), to tackle such challenges. New modules such as the Omni-Directional Convolution Channel Prior Convolutional Attention Efficient Layer Aggregation Network (OA-ELAN), Spatial Pyramid Pooling Channel Shuffling and Pixel-level Convolution Bilat-eral-branch Transformer (SPPCSPCBiFormer), and Ghost-Shuffle Convolution Enhanced Layer Aggregation Network-High performance (G-ELAN-H) are central to its design, which reduce the computational burden and enhance the accuracy in detecting small targets and capturing local features and crucial information. The study adopts transfer learning to deal with the lack of sonar image samples. By pre-training the large-scale Underwater Acoustic Target Detection Dataset (UATD dataset), DA-YOLOV7 obtains initial weights, fine-tuned on the smaller Smaller Common Sonar Target Detection Dataset (SCTD dataset), thereby reducing the risk of overfitting which is commonly encountered in small datasets. The experimental results on the UATD, the Underwater Optical Target Detection Intelligent Algorithm Competition 2021 Dataset (URPC), and SCTD datasets show that DA-YOLOV7 exhibits outstanding performance, with mAP@0.5 scores reaching 89.4%, 89.9%, and 99.15%, respectively. In addition, the model maintains real-time speed while having superior accuracy and recall rates compared to existing mainstream target recognition models. These findings establish the superiority of DA-YOLOV7 in sonar image analysis tasks.

Funder

Guangxi Science and Technology Base and Talent Project

2021 Open Fund project of the Key Laboratory of Cognitive Radio and Information Processing of the Ministry of Education

Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing Project

Beihai City Science and Technology Bureau Project

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3