Evaluation of Satellite-Based Precipitation Products over Complex Topography in Mountainous Southwestern China

Author:

Tang Xuan,Li Hongxia,Qin Guanghua,Huang Yuanyuan,Qi Yongliang

Abstract

Satellite-based precipitation products (SBPPs) are essential for rainfall quantification in areas where ground-based observation is scarce. However, the accuracy of SBPPs is greatly influenced by complex topography. This study evaluates the performance of Integrated Multi-satellite Retrievals for GPM (IMERG) and Global Satellite Mapping of Precipitation (GSMaP) in characterizing rainfall in a mountainous catchment of southwestern China, with an emphasis on the effect of three topographic variables (elevation, slope, aspect). The SBPPs are evaluated by comparing rain gauge observations at eight ground stations from May to October in 2014–2018. Results show that IMERG and GSMaP have good rainfall detection capability for the entire region, with POD = 0.75 and 0.93, respectively. In addition, IMERG overestimates rainfall (BIAS = −48.8%), while GSMaP is consistent with gauge rainfall (BIAS = −0.4%). Comprehensive analysis shows that IMERG and GSMaP are more impacted by elevation, and then slope, whereas aspect has little impact. The independent evaluations suggest that variability of elevation and slope negatively correlate with the accuracy of SBPPs. The accuracy of GSMaP presents weaker dependence on topography than that of IMERG in the study area. Our findings demonstrate the applicability of IMERG and GSMaP in mountainous catchments of Southwest China. We confirm that complex topography impacts the performance of SBPPs, especially for complex topography in mountainous areas. It is suggested that taking topographical factors into account is needed for hydrometeorological applications such as flood forecasting, and SBPP evaluations and retrieval technology require further improvement in the future for better applications.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3