Automated Classification of the Tympanic Membrane Using a Convolutional Neural Network

Author:

Lee Je YeonORCID,Choi Seung-HoORCID,Chung Jong Woo

Abstract

Precise evaluation of the tympanic membrane (TM) is required for accurate diagnosis of middle ear diseases. However, making an accurate assessment is sometimes difficult. Artificial intelligence is often employed for image processing, especially for performing high level analysis such as image classification, segmentation and matching. In particular, convolutional neural networks (CNNs) are increasingly used in medical image recognition. This study demonstrates the usefulness and reliability of CNNs in recognizing the side and perforation of TMs in medical images. CNN was constructed with typically six layers. After random assignment of the available images to the training, validation and test sets, training was performed. The accuracy of the CNN model was consequently evaluated using a new dataset. A class activation map (CAM) was used to evaluate feature extraction. The CNN model accuracy of detecting the TM side in the test dataset was 97.9%, whereas that of detecting the presence of perforation was 91.0%. The side of the TM and the presence of a perforation affect the activation sites. The results show that CNNs can be a useful tool for classifying TM lesions and identifying TM sides. Further research is required to consider real-time analysis and to improve classification accuracy.

Funder

Asan Institute for Life Sciences, Asan Medical Center

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3