An ensemble approach for classification of tympanic membrane conditions using soft voting classifier

Author:

Akyol KemalORCID,Uçar EmineORCID,Atila ÜmitORCID,Uçar MuratORCID

Abstract

AbstractOtitis media is a medical concept that represents a range of inflammatory middle ear disorders. The high costs of medical devices utilized by field experts to diagnose the disease relevant to otitis media prevent the widespread use of these devices. This makes it difficult for field experts to make an accurate diagnosis and increases subjectivity in diagnosing the disease. To solve these problems, there is a need to develop computer-aided middle ear disease diagnosis systems. In this study, a deep learning-based approach is proposed for the detection of OM disease to meet this emerging need. This approach is the first that addresses the performance of a voting ensemble framework that uses Inception V3, DenseNet 121, VGG16, MobileNet, and EfficientNet B0 pre-trained DL models. All pre-trained CNN models used in the proposed approach were trained using the Public Ear Imagery dataset, which has a total of 880 otoscopy images, including different eardrum cases such as normal, earwax plug, myringosclerosis, and chronic otitis media. The prediction results of these models were evaluated with voting approaches to increase the overall prediction accuracy. In this context, the performances of both soft and hard voting ensembles were examined. Soft voting ensemble framework achieved highest performance in experiments with 98.8% accuracy, 97.5% sensitivity, and 99.1% specificity. Our proposed model achieved the highest classification performance so far in the current dataset. The results reveal that our voting ensemble-based DL approach showed quite high performance for the diagnosis of middle ear disease. In clinical applications, this approach can provide a preliminary diagnosis of the patient's condition just before field experts make a diagnosis on otoscopic images. Thus, our proposed approach can help field experts to diagnose the disease quickly and accurately. In this way, clinicians can make the final diagnosis by integrating automatic diagnostic prediction with their experience.

Funder

Izmir Bakircay University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3