Multi‐modal deep learning for joint prediction of otitis media and diagnostic difficulty

Author:

Sundgaard Josefine Vilsbøll1ORCID,Hannemose Morten Rieger1,Laugesen Søren2ORCID,Bray Peter3,Harte James2,Kamide Yosuke4,Tanaka Chiemi5,Paulsen Rasmus R.1,Christensen Anders Nymark1

Affiliation:

1. Department of Applied Mathematics and Computer Science Technical University of Denmark Denmark

2. Interacoustics Research Unit Technical University of Denmark Lyngby Denmark

3. Interacoustics A/S Middelfart Denmark

4. Kamide ENT Clinic Shizuoka Japan

5. Diatec Japan Kanagawa Japan

Abstract

AbstractObjectivesIn this study, we propose a diagnostic model for automatic detection of otitis media based on combined input of otoscopy images and wideband tympanometry measurements.MethodsWe present a neural network‐based model for the joint prediction of otitis media and diagnostic difficulty. We use the subclassifications acute otitis media and otitis media with effusion. The proposed approach is based on deep metric learning, and we compare this with the performance of a standard multi‐task network.ResultsThe proposed deep metric approach shows good performance on both tasks, and we show that the multi‐modal input increases the performance for both classification and difficulty estimation compared to the models trained on the modalities separately. An accuracy of 86.5% is achieved for the classification task, and a Kendall rank correlation coefficient of 0.45 is achieved for difficulty estimation, corresponding to a correct ranking of 72.6% of the cases.ConclusionThis study demonstrates the strengths of a multi‐modal diagnostic tool using both otoscopy images and wideband tympanometry measurements for the diagnosis of otitis media. Furthermore, we show that deep metric learning improves the performance of the models.

Funder

William Demant Fonden

Publisher

Wiley

Reference27 articles.

1. Deep metric learning for otitis media classification

2. Detection of eardrum abnormalities using ensemble deep learning approaches;Senaras C;Medical Imaging 2018: Computer‐aided diagnosis,2018

3. A hybrid feature‐based segmentation and classification system for the computer aided self‐diagnosis of otitis media;Shie CK;Annu Int Conf IEEE Eng Med Biol Soc,2014

4. Deep Learning for Classification of Pediatric Otitis Media

5. Analysing wideband absorbance immittance in normal and ears with otitis media with effusion using machine learning

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3