A Hybrid Method for Remaining Useful Life Estimation of Lithium-Ion Battery with Regeneration Phenomena

Author:

Zhao Lin,Wang Yipeng,Cheng Jianhua

Abstract

The lithium-ion battery has become the primary energy source of many electronic devices. Accurately forecasting the remaining useful life (RUL) of a battery plays an essential role in ensuring reliable operatioin of an electronic system. This paper investigates the lithium-ion battery RUL prediction problem with capacity regeneration phenomena. We aim to reduce the accumulation of the prediction error by integrating different capacity degradation models and thereby improve the prediction accuracy of the long-term RUL. To describe the degradation process more accurately, we decoupled the degradation process into two types: capacity regeneration and normal degradation. Then, we modelled two kinds of degradation processes separately. In the prediction phase, we predicted the battery state of health (SOH) by using the relevance vector machine (RVM) and the gray model (GM) alternately, updated the training dataset according to the prediction results, and then updated the RVM and GM. The RVM and GM correct each other’s prediction results constantly, which reduces the cumulative error of prediction and improves the prediction accuracy of the battery SOH. Experimental results with the National Aeronautics and Space Administration (NASA) battery dataset demonstrated that the proposed method can accurately establish the degradation model and achieve better performance for the RUL estimation as compared with the single RVM or GM methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3