Prediction Of The Remaining Useful Life Of Lithium-Ion Batteries Based On An Empirical Mode Approach With Artificial Neural Networks

Author:

Bayrı Ozancan1ORCID,Akkaya Sıtkı1ORCID

Affiliation:

1. SIVAS SCIENCE AND TECHNOLOGY UNIVERSITY

Abstract

Forecasting future capacities and estimating the remaining useful life, while incorporating uncertainty quantification, poses a crucial yet formidable challenge in the realm of battery health diagnosis and management. In this study, a data-driven model based on artificial neural networks (ANN) and signal decomposition techniques including Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), and Empirical Wavelet Transform (EWT) is presented to predict the capacity value of lithium-ion batteries. Signal decomposition was performed using the discharge voltage values for four different batteries. A total of 22 features were obtained. The features of the signal decomposition methods were evaluated separately as well as hybrid approaches. Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) performance metrics are used in the proposed method and the values obtained are 3.67×10-6, 0.001351 and 0.002311, respectively. According to the findings, the hybrid model proposed demonstrated positive results in terms of accuracy, adaptability, and robustness.

Publisher

Celal Bayar University Journal of Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3