Design of regression neural network model for estimating the remaining useful life of lithium-ion battery

Author:

Khandelwal Kunal Subhash,Shete Virendra V.

Abstract

Lithium-ion batteries are widely utilized in a variety of transportation sectors, including highways, airplanes, and defensive military applications because of their positive features, which include a low self-discharge rate, raised operating voltage, prolonged cycle life, and high energy density. Nevertheless, during operation, the battery undergoes adverse reactions that may eventually cause material aging and capacity deterioration. For this reason, the prediction of remaining useful life (RUL) for LiBs is important and necessary for ensuring reliable system operation. Moreover, accurate RUL prediction can effectively offer maintenance strategies to certify the system’s dependability and safety. The impedance of the battery plays a vital role in the degradation process and hence its measurement accounts for the changes in the battery’s internal parameters as aging occurs. The objective of this paper is to create a forecasting model for the lifespan of batteries through the application of data analysis. Moreover, it aims to use a Regression Neural Network (RNN) based mathematical model to assess the degradation of the battery across diverse operational scenarios. The co-efficient of the RNN model is found by solving the RNN equations. In this research, MATLAB is employed for data analysis, utilizing open-source battery data sourced from the NASA dataset. The conclusive prediction outcomes indicate the effectiveness of the proposed methodology in accurately forecasting the battery RUL.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3