Abstract
Sodium diclofenac (DCF) presence reported in water use cycle at various concentrations including trace levels necessitates continuous development of advanced analytical method for its determination. In this work, ease electrochemical methods for DCF determination based on voltammetric and amperometric techniques were proposed using a simple combination of graphene with multi-walled carbon nanotubes as paste electrode. Integration of the graphene with multi-walled carbon nanotubes enlarged the electroactive surface area of the electrode and implicitly enhanced the electrochemical response for DCF determination. On the basis of the sorption autocatalytic effect manifested at low concentration of DCF, we found that the preconcentration step applied prior to differential-pulsed voltammetry (DPV) and multiple-pulsed amperometry (MPA) allowed for the enhancement of the electroanalytical performance of the DCF electrochemical detections, which were validated by testing in tap water. The lowest limit of detection (LOD) of 1.40 ng·L−1 was found using preconcentration prior to DPV under optimized operating conditions, which is better than that reached by other carbon-based electrodes reported in the literature.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献