Recent trends in nanostructured carbon-based electrochemical sensors for the detection and remediation of persistent toxic substances in real-time analysis

Author:

Thakur Abhinay,Kumar AshishORCID

Abstract

Abstract There are rising issues regarding the presence and discharge of emerging pollutants (EPs) in the ecosystem, including pharmaceutical waste, organic contaminants, heavy metals, pesticides, antibiotics and dyes. The human populace is typically exposed to a variety of EPs and toxins, such as those found in the soil, air, food supply, and drinkable water. Thus, creating new purification methods and effective pollution detection tools is a significant task. Several researchers globally have created unique analytical techniques including chromatography/mass and gaseous atomic absorption spectroscopy for the identification of contaminants to date. The aforementioned techniques have excellent sensitivity, but they are costly, time-consuming, costly, need sophisticated expertise to operate and are difficult to execute due to their enormous scale. Electrochemical sensors with resilience, specificity, sensibility, and real-time observations are thus been designed as a solution to the aforementioned shortcomings. The development of innovative systems to assures human and environmental protection has been aided by significant improvements in nanostructured carbon-based electrochemical sensor platforms. These platforms show enticing characteristics including excellent electrocatalytic operations, increased electrical conductance, and efficient surface region when compared to conventional methods. This paper intends to provide an analysis of low-cost nanostructured carbon-based electrochemical sensors from 2015 to 2022 that could detect and eradicate components of EPs from various origins. This review discusses the characteristics and uses of nanostructured carbon-based electrochemical sensors, which include carbon nanotubes, MXenes, carbon dots/graphene dots, graphene/graphene oxide, and other materials. These sensors are used to detect EPs such as heavy metal ions (Pb(II), Cd(II), Hg(II), etc), pharmaceutical waste, dyes and pesticides. Additionally, processing and characterization techniques, including differential-pulsed voltammograms, SW voltammograms, ultraviolet-visible spectroscopy, fluorescence, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and scanning electron microscopy (SEM) are discussed in detail to examine the prospects of these carbon-based electrochemical sensors and associated detection mechanisms. It is intended that this analysis would stimulate the development of new detection methods for protecting public health and restoring the environment.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3