Ferrocene-Containing Gallic Acid-Derivative Modified Carbon-Nanotube Electrodes for the Fast Simultaneous and Selective Determination of Cytostatics from Aqueous Solutions

Author:

Motoc (m. Ilies) Sorina1ORCID,Andelescu Adelina1ORCID,Visan Alexandru1,Baciu Anamaria2,Szerb Elisabeta I.1ORCID,Manea Florica2ORCID

Affiliation:

1. “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania

2. Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, Bvd. Vasile Parvan No. 6, 300223 Timisoara, Romania

Abstract

In this work, a ferrocene-containing gallic acid-derivative modified carbon-nanotube paste electrode (Gal-Fc-CNT), obtained through simple mechanical mixing, was studied for the fast simultaneous voltammetric determination of doxorubicin (DOX), capecitabine (CPB), and cyclophosphamide (CPP) as cytostatic indices based on their cumulative signals and the selective determination of DOX. The individual and simultaneous electrochemical behavior of DOX, CPB, and CPP, studied through cyclic voltammetry (CV) on the Gal-Fc-CNT paste electrode at various pHs and potential ranges, allowed for the development of a simple simultaneous determination method as a cytostatic index at a pH of 12 using square-wave voltammetry, which allowed for a better performance than reported electrodes for each individual cytostatic. A faster and selective detection of DOX, with a limit of detection of 75 ng·L−1, was achieved using square-wave voltammetry at a pH of 3. The good results obtained for the real tap water assessment indicated the applicability of the Gal-Fc-CNT paste electrode for practical applications (water samples).

Funder

Ministry of Research, Innovation and Digitization, CNCS/CCCDI—UEFISCDI

Romanian Ministry of Education and Research, “Program intern de stimulare si recompensare a activitatii didactice”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3