Forecasting of Flash Floods Peak Flow for Environmental Hazards and Water Harvesting in Desert Area of El-Qaa Plain, Sinai

Author:

Abd-Elaty IsmailORCID,Shoshah Hanan,Zeleňáková MartinaORCID,Kushwaha Nand LalORCID,El-Dean Osama W.

Abstract

Water resources in arid and semi-arid regions are limited where the demands of agriculture, drinking and industry are increasing, especially in drought areas. These regions are subjected to climate changes (CC) that affect the watershed duration and water supplies. Estimations of flash flooding (FF) volume and discharge are required for future development to meet the water demands in these water scarcity regions. Moreover, FF in hot deserts is characterized by low duration, high velocity and peak discharge with a large volume of sediment. Today, the trends of flash flooding due to CC have become very dangerous and affect water harvesting volume and human life due to flooding hazards. The current study forecasts the peak discharges and volumes in the desert of El-Qaa plain in Southwestern Sinai, Egypt, for drought and wet seasons by studying the influence of recurrence intervals for 2, 5, 10, 25, 50 and 100 years. Watershed modeling system software (WMS) is used and applied for the current study area delineation. The results show that the predictions of peak discharges reached 0, 0.44, 45.72, 195.45, 365.91 and 575.30 cubic meters per s (m3 s−1) while the volumes reached 0, 23, 149.80, 2,896,241.40, 12,664,963.80 and 36,681,492.60 cubic meters (m3) for 2, 5, 10, 25, 50 and 100 years, respectively, which are precipitation depths of 15.20, 35.30, 50.60, 70.70, 85.90 and 101 mm, respectively. Additionally, the average annual precipitation reached 13.37 mm, with peak flow and volume reaching 0 m3 s−1 where all of water harvesting returned losses. Moreover, future charts and equations were developed to estimate the peak flow and volume, which are useful for future rainwater harvesting and the design of protection against flooding hazards in drought regions due to CC for dry and wet seasons. This study provides relevant information for hazard and risk assessment for FF in hot desert regions. The study recommends investigating the impact of recurrence intervals on sediment transport in these regions.

Funder

Ministry of Education of the Slovak Republic

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3