Enhanced groundwater availability through rainwater harvesting and managed aquifer recharge in arid regions

Author:

Abd-Elaty Ismail,Kuriqi AlbanORCID,Ahmed Ashraf,Ramadan Elsayed M.

Abstract

AbstractClimate change in desert areas and semi-arid watersheds may offer a promising solution for the water scarcity problem that Bedouins and local inhabitants face. This study investigated the integrated water resources management in arid and semi-arid regions using rainwater harvesting in combination with the managed aquifer recharge (RWH-MAR) technique. The study also used recharge wells and storage dams to achieve the sustainability of groundwater supplies in the context of climate change and management of the flow to the Gulf of Suez. Therefore, different return periods of 10, 25, 50, and 100 years were considered for the annual flood volume resulting from those watersheds. Moreover, hydrologic modeling was carried out for the El Qaa plain area, South Sinai, Egypt, using the Watershed Modeling System (WMS) and the groundwater modeling of SEAWAT code. Our findings show that for different scenarios of climate change based on  return periods of 10, 25, 50, and 100 years, the aquifer potentiality reached 24.3 MCM (million cubic meters) per year, 28.8 MCM, 36.7 MCM, and 49.4 MCM compared to 21.7 MCM at 2014 with storage of groundwater ranges 11.8%, 32.1%, 69%, and 127.4%, respectively. These findings have significant implications for the system of RWH-MAR and groundwater sustainability in El Qaa Plain, South Sinai. The RWH-MAR proved to be an effective approach that can be applied in different water-stressed and arid regions to support freshwater resources for sustainable future development and food security, as well as protect communities from extreme flash flood events.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3