Modeling and Predicting Pulmonary Tuberculosis Incidence and Its Association with Air Pollution and Meteorological Factors Using an ARIMAX Model: An Ecological Study in Ningbo of China

Author:

Chen Yun-PengORCID,Liu Le-FanORCID,Che Yang,Huang Jing,Li Guo-XingORCID,Sang Guo-Xin,Xuan Zhi-Qiang,He Tian-FengORCID

Abstract

The autoregressive integrated moving average with exogenous regressors (ARIMAX) modeling studies of pulmonary tuberculosis (PTB) are still rare. This study aims to explore whether incorporating air pollution and meteorological factors can improve the performance of a time series model in predicting PTB. We collected the monthly incidence of PTB, records of six air pollutants and six meteorological factors in Ningbo of China from January 2015 to December 2019. Then, we constructed the ARIMA, univariate ARIMAX, and multivariate ARIMAX models. The ARIMAX model incorporated ambient factors, while the ARIMA model did not. After prewhitening, the cross-correlation analysis showed that PTB incidence was related to air pollution and meteorological factors with a lag effect. Air pollution and meteorological factors also had a correlation. We found that the multivariate ARIMAX model incorporating both the ozone with 0-month lag and the atmospheric pressure with 11-month lag had the best performance for predicting the incidence of PTB in 2019, with the lowest fitted mean absolute percentage error (MAPE) of 2.9097% and test MAPE of 9.2643%. However, ARIMAX has limited improvement in prediction accuracy compared with the ARIMA model. Our study also suggests the role of protecting the environment and reducing pollutants in controlling PTB and other infectious diseases.

Funder

Medical Technology Program Foundation of Zhejiang

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3