Abstract
AbstractDengue is the fastest spreading mosquito-transmitted disease in the world. In China, Guangzhou City is believed to be the most important epicenter of dengue outbreaks although the transmission patterns are still poorly understood. We developed an autoregressive integrated moving average model incorporating external regressors to examine the association between the monthly number of locally acquired dengue infections and imported cases, mosquito densities, temperature and precipitation in Guangzhou. In multivariate analysis, imported cases and minimum temperature (both at lag 0) were both associated with the number of locally acquired infections (P < 0.05). This multivariate model performed best, featuring the lowest fitting root mean squared error (RMSE) (0.7520), AIC (393.7854) and test RMSE (0.6445), as well as the best effect in model validation for testing outbreak with a sensitivity of 1.0000, a specificity of 0.7368 and a consistency rate of 0.7917. Our findings suggest that imported cases and minimum temperature are two key determinants of dengue local transmission in Guangzhou. The modelling method can be used to predict dengue transmission in non-endemic countries and to inform dengue prevention and control strategies.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Epidemiology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献