Forecasting sustainable development goals scores by 2030 using machine learning models

Author:

Chenary Kimia1,Pirian Kalat Omid2,Sharifi Ayyoob34ORCID

Affiliation:

1. Department of Architecture and Urban Planning University of Bojnord Bojnord Iran

2. Department of Architecture and Urban Planning Shahid Beheshti University Tehran Iran

3. The IDEC Institute & Network for Education and Research on Peace and Sustainability (NERPS) Hiroshima University Higashi‐Hiroshima Japan

4. School of Architecture and Design Lebanese American University Beirut Lebanon

Abstract

AbstractThe Sustainable Development Goals (SDGs) set by the United Nations are a worldwide appeal to eliminate poverty, preserve the environment, address climate change, and guarantee that everyone experiences peace and prosperity by 2030. These 17 goals cover various global issues concerning health, education, inequality, environmental decline, and climate change. Several investigations have been carried out to track advancements toward these goals. However, there is limited research on forecasting SDG scores. This research aims to forecast SDG scores for global regions by 2030 using ARIMAX and LR (Linear Regression) smoothed by HW (Holt‐Winters') multiplicative technique. To enhance model performance, we used predictors identified from the SDGs that are more likely to be influenced by Artificial Intelligence (AI) in the future. The forecast results for 2030 show that “OECD countries” (80) (with a 2.8% change) and “Eastern Europe and Central Asia” (74) (with a 2.37% change) are expected to achieve the highest SDG scores. “Latin America and the Caribbean” (73) (with a 4.17% change), “East and South Asia” (69) (with a 2.64% change), “Middle East and North Africa” (68) (with a 2.32% change), and “Sub‐Saharan Africa” (56) (with a 7.2% change) will display lower levels of SDG achievement, respectively.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3