Land Use Change Simulation in Rapid Urbanizing Regions: A Case Study of Wuhan Urban Areas

Author:

Zhang Jinling,Hou Ying,Dong Yifan,Wang Cun,Chen Weiping

Abstract

Until now, few studies have used the mainstreaming models to simulate the land use changes in the cities of rapid urbanizing regions. Therefore, we aimed to develop a methodology to simulate the land use changes in rapid urbanizing regions that could reveal the land use change trend in the cities of the regions. Taking the urban areas of Wuhan, a typical rapid urbanizing region in China, as the study area, this study built a Markov chain–artificial neural network (ANN)–cellular automaton (CA) coupled model. The model used land use classification spatial data with a spatial resolution of 5 m in 2010 and 2020, obtained by remote sensing image interpretation, and data on natural and socio-economic driving forces for land use change simulation. Using the coupled model, the land use patterns of Wuhan urban areas in 2020 were simulated, which were validated in comparison with the actual land use data in 2020. Finally, the model was used to simulate the land uses in the study area in 2030. The model validation indicates that the land use change simulation has a high accuracy of 90.7% and a high kappa coefficient of 0.87. The simulated land uses of the urban areas of Wuhan show that artificial surfaces will continue to expand, with an area increase of approximately 7% from 2020 to 2030. Moreover, the area of urban green spaces will also increase by approximately 7%, while that of water bodies, grassland, cropland, and forests will decrease by 12.6%, 13.6%, 34.9%, and 1.3%, respectively, from 2020 to 2030. This study provides a method of simulating the land use changes in the cities of rapid urbanizing regions and helps to reveal the patterns and driving mechanisms of land use change in Wuhan urban areas.

Funder

Chinese Ministry of Science and Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3