Urbanization Process: A Simulation Method of Urban Expansion Based on RF-SNSCNN-CA Model

Author:

Liu Minghao12,Liao Xiangli12,Chen Chun34

Affiliation:

1. School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. Spatial Information Research Center, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

3. School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China

4. Research Center for Ecological Human Settlements and Green Transportation, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

One of the focal points in Geographic Information Science (GIS) is to uncover the spatial distribution patterns of geographical phenomena. In response to the insufficient spatial feature learning concerning neighborhoods in traditional machine learning-based Cellular Automata (CA) models for land use change, this study couples the Random Forest (RF) model and the Spatially Non-Stationary Convolutional Neural Network (SNSCNN) model to the CA model. The resulting RF-SNSCNN-CA model considers the issue of spatial non-stationarity by incorporating attention mechanisms. Using observed urban land change data from 2010 to 2017 in the 21 districts of Chongqing’s main city as an example, two sets of experiments comprising eight scenarios were designed to verify the neighborhood effects. The results demonstrate that the proposed RF-SNSCNN-CA model achieves an Overall Accuracy (OA) of 97.82%, Kappa of 0.7683, and Figure of Merit (FoM) of 0.3836. The study reveals the following findings. Firstly, the RF-SNSCNN-CA model integrates the dual advantages of traditional machine learning and deep learning models, in which SNSCNN improves by the combined effect of channel and spatial attention mechanisms improves the learning of neighborhood features; secondly, the machine learning-like urban sprawl CA modeling process, regardless of the approach taken to obtain development suitability, cannot completely replace the learning of the neighborhood part; lastly, the use of traditional neighborhood modeling methods may produce suppression of simulation results and make the model inadequately learn spatial features.

Funder

Natural Science Foundation of Chongqing

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3