Urban Ecological Quality Assessment Based on Google Earth Engine and Driving Factors Analysis: A Case Study of Wuhan City, China

Author:

Zhang Weiwei123,Zhang Wanqian2,Ji Jianwan13ORCID,Chen Chao13

Affiliation:

1. School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215000, China

2. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China

3. Suzhou Key Laboratory of Spatial Information Intelligent Technology and Application, Suzhou 215000, China

Abstract

Ecological quality is a critical factor affecting the livability of urban areas. Remote sensing technology enables the rapid assessment of ecological quality (EQ), providing scientific theoretical support for the maintenance and management of urban ecology. This paper evaluates and analyzes the EQ and its driving factors in the city of Wuhan using remote sensing data from five periods: 2001, 2006, 2011, 2016, and 2021, supported by the Google Earth Engine (GEE) platform. By employing principal component analysis, a Remote Sensing Ecological Index (RSEI) was constructed to assess the spatiotemporal differences of EQ in Wuhan City. Furthermore, the study utilized the optimal parameter-based geographical detector model to analyze the influence of factors such as elevation, slope, aspect, population density, greenness, wetness, dryness, and heat on the RSEI value in 2021 and further explored the impact of changes in precipitation and temperature on the EQ in Wuhan. The results indicate that (1) principal component analysis shows that greenness and wetness positively affect Wuhan’s EQ, while dryness and heat have negative impacts; (2) spatiotemporal analysis reveals that from 2001 to 2021, the EQ in Wuhan showed a trend of initial decline followed by improvement, with the classification grades evolving from poor and average to good and better; (3) the analysis of driving factors shows that all nine indicators have a certain impact on the EQ in Wuhan, with the influence ranking as NDVI > NDBSI > LST > WET > elevation > population density > GDP > slope > aspect; (4) the annual average temperature and precipitation in Wuhan have a non-significant impact on the EQ. The EQ in Wuhan has improved in recent years, but comprehensive management still requires enhancement.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3