Abstract
The important practical problem of robust synchronization in distance and orientation for a class of differential-drive mobile robots is tackled in this work as an active disturbance rejection control (ADRC) problem. To solve it, a kinematic model of the governed system is first developed based on the distance and formation angle between the agents. Then, a special high-order extended state observer is designed to collectively estimate the perturbations (formed by longitudinal and lateral slipping parameters) that affect the kinematic model. Finally, a custom error-based ADRC approach is designed and applied assuming that the distance and orientation between the agents are the only available measurements. The proposed control strategy does not need time-derivatives of the reference trajectory, which increases the practical appeal of the proposed solution. The experimental results, obtained in laboratory conditions with a set of differential-drive mobile robots operating in a leader–follower configuration, show the effectiveness of the proposed governing scheme in terms of trajectory tracking and disturbance rejection.
Funder
Instituto Politécnico Nacional
Ibero American University
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献