Author:
Jiao Wenjiang,Hao Xingwei,Qin Chao
Abstract
CNN is particularly effective in extracting spatial features. However, the single-layer classifier constructed by activation function in CNN is easily interfered by image noise, resulting in reduced classification accuracy. To solve the problem, the advanced ensemble model XGBoost is used to overcome the deficiency of a single classifier to classify image features. To further distinguish the extracted image features, a CNN-XGBoost image classification model optimized by APSO is proposed, where APSO optimizes the hyper-parameters on the overall architecture to promote the fusion of the two-stage model. The model is mainly composed of two parts: feature extractor CNN, which is used to automatically extract spatial features from images; feature classifier XGBoost is applied to classify features extracted after convolution. In the process of parameter optimization, to overcome the shortcoming that traditional PSO algorithm easily falls into a local optimal, the improved APSO guide the particles to search for optimization in space by two different strategies, which improves the diversity of particle population and prevents the algorithm from becoming trapped in local optima. The results on the image set show that the proposed model gets better results in image classification. Moreover, the APSO-XGBoost model performs well on the credit data, which indicates that the model has a good ability of credit scoring.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Reference38 articles.
1. Pattern Recognition and Neural Networks;Ripley,2007
2. Study on credit scoring model and forecasting based on probabilistic neural network;Su-lin;Syst. Eng. Theory Pract.,2005
3. Statistical Learning Theory;Vapnik,1998
4. Efficient Saliency-Based Object Detection in Remote Sensing Images Using Deep Belief Networks
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献