Neural Collaborative Filtering with Ontologies for Integrated Recommendation Systems

Author:

Alaa El-deen Ahmed Rana,Fernández-Veiga ManuelORCID,Gawich MariamORCID

Abstract

Machine learning (ML) and especially deep learning (DL) with neural networks have demonstrated an amazing success in all sorts of AI problems, from computer vision to game playing, from natural language processing to speech and image recognition. In many ways, the approach of ML toward solving a class of problems is fundamentally different than the one followed in classical engineering, or with ontologies. While the latter rely on detailed domain knowledge and almost exhaustive search by means of static inference rules, ML adopts the view of collecting large datasets and processes this massive information through a generic learning algorithm that builds up tentative solutions. Combining the capabilities of ontology-based recommendation and ML-based techniques in a hybrid system is thus a natural and promising method to enhance semantic knowledge with statistical models. This merge could alleviate the burden of creating large, narrowly focused ontologies for complicated domains, by using probabilistic or generative models to enhance the predictions without attempting to provide a semantic support for them. In this paper, we present a novel hybrid recommendation system that blends a single architecture of classical knowledge-driven recommendations arising from a tailored ontology with recommendations generated by a data-driven approach, specifically with classifiers and a neural collaborative filtering. We show that bringing together these knowledge-driven and data-driven worlds provides some measurable improvement, enabling the transfer of semantic information to ML and, in the opposite direction, statistical knowledge to the ontology. Moreover, the novel proposed system enables the extraction of the reasoning recommendation results after updating the standard ontology with the new products and user behaviors, thus capturing the dynamic behavior of the environment of our interest.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3