Improving Recommendations for Online Retail Markets Based on Ontology Evolution

Author:

Alaa Rana,Gawish MariamORCID,Fernández-Veiga ManuelORCID

Abstract

The semantic web is considered to be an extension of the present web. In the semantic web, information is given with well-defined meanings, and thus helps people worldwide to cooperate together and exchange knowledge. The semantic web plays a significant role in describing the contents and services in a machine-readable form. It has been developed based on ontologies, which are deemed the backbone of the semantic web. Ontologies are a key technique with which semantics are annotated, and they provide common comprehensible foundation for resources on the semantic web. The use of semantics and artificial intelligence leads to what is known to be “Smarter Web”, where it will be easy to retrieve what customers want to see on e-commerce platforms, and thus will help users save time and enhance their search for the products they need. The semantic web is used as well as webs 3.0, which helps enhancing systems performance. Previous personalized recommendation methods based on ontologies identify users’ preferences by means of static snapshots of purchase data. However, as the user preferences evolve with time, the one-shot ontology construction is too constrained for capturing individual diverse opinions and users’ preferences evolution over time. This paper will present a novel recommendation system architecture based on ontology evolution, the proposed subsystem architecture for ontology evolution. Furthermore, the paper proposes an ontology building methodology based on a semi-automatic technique as well as development of online retail ontology. Additionally, a recommendation method based on the ontology reasoning is proposed. Based on the proposed method, e-retailers can develop a more convenient product recommendation system to support consumers’ purchase decisions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3