Rating Prediction Quality Enhancement in Low-Density Collaborative Filtering Datasets

Author:

Margaris Dionisis1ORCID,Vassilakis Costas2ORCID,Spiliotopoulos Dimitris3ORCID,Ougiaroglou Stefanos4ORCID

Affiliation:

1. Department of Digital Systems, University of the Peloponnese, 23100 Sparta, Greece

2. Department of Informatics and Telecommunications, University of the Peloponnese, 22131 Tripoli, Greece

3. Department of Management Science and Technology, University of the Peloponnese, 22131 Tripoli, Greece

4. Department of Information and Electronic Engineering, School of Engineering, International Hellenic University, 57400 Thessaloniki, Greece

Abstract

Collaborative filtering has proved to be one of the most popular and successful rating prediction techniques over the last few years. In collaborative filtering, each rating prediction, concerning a product or a service, is based on the rating values that users that are considered “close” to the user for whom the prediction is being generated have given to the same product or service. In general, “close” users for some user u correspond to users that have rated items similarly to u and these users are termed as “near neighbors”. As a result, the more reliable these near neighbors are, the more successful predictions the collaborative filtering system will compute and ultimately, the more successful recommendations the recommender system will generate. However, when the dataset’s density is relatively low, it is hard to find reliable near neighbors and hence many predictions fail, resulting in low recommender system reliability. In this work, we present a method that enhances rating prediction quality in low-density collaborative filtering datasets, by considering predictions whose features are associated with high prediction accuracy as additional ratings. The presented method’s efficacy and applicability are substantiated through an extensive multi-parameter evaluation process, using widely acceptable low-density collaborative filtering datasets.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3