Solar Forecasts Based on the Clear Sky Index or the Clearness Index: Which Is Better?

Author:

Lauret PhilippeORCID,Alonso-Suárez RodrigoORCID,Le Gal La Salle JosselinORCID,David MathieuORCID

Abstract

In the realm of solar forecasting, it is common to use a clear sky model output to deseasonalise the solar irradiance time series needed to build the forecasting models. However, most of these clear sky models require the setting of atmospheric parameters for which accurate values may not be available for the site under study. This can hamper the accuracy of the prediction models. Normalisation of the irradiance data with a clear sky model leads to the construction of forecasting models with the so-called clear sky index. Another way to normalize the irradiance data is to rely on the extraterrestrial irradiance, which is the irradiance at the top of the atmosphere. Extraterrestrial irradiance is defined by a simple equation that is related to the geometric course of the sun. Normalisation with the extraterrestrial irradiance leads to the building of models with the clearness index. In the solar forecasting domain, most models are built using time series based on the clear sky index. However, there is no empirical evidence thus far that the clear sky index approach outperforms the clearness index approach. Therefore the goal of this preliminary study is to evaluate and compare the two approaches. The numerical experimental setup for evaluating the two approaches is based on three forecasting methods, namely, a simple persistence model, a linear AutoRegressive (AR) model, and a non-linear neural network (NN) model, all of which are applied at six sites with different sky conditions. It is shown that normalization of the solar irradiance with the help of a clear sky model produces better forecasts irrespective of the type of model used. However, it is demonstrated that a nonlinear forecasting technique such as a neural network built with clearness time series can beat simple linear models constructed with the clear sky index.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3