Impact of Stationarizing Solar Inputs on Very-Short-Term Spatio-Temporal Global Horizontal Irradiance (GHI) Forecasting

Author:

Amaro e Silva Rodrigo12,Benavides Cesar Llinet3ORCID,Manso Callejo Miguel Ángel3ORCID,Cira Calimanut-Ionut3ORCID

Affiliation:

1. Centre Observation, Impacts, Energy, MINES ParisTech, PSL Research University, 06904 Sophia Antipolis, France

2. Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

3. Departamento de Ingeniería Topográfica y Cartográfica, Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía, Universidad Politécnica de Madrid, C/Mercator 2, 28031 Madrid, Spain

Abstract

In solar forecasting, it is common practice for solar data (be it irradiance or photovoltaic power) to be converted into a stationary index (e.g., clear-sky or clearness index) before being used as inputs for solar-forecasting models. However, its actual impact is rarely quantified. Thus, this paper aims to study the impact of including this processing step in the modeling workflow within the scope of very-short-term spatio-temporal forecasting. Several forecasting models are considered, and the observed impact is shown to be model-dependent. Persistence does not benefit from this for such short timescales; however, the statistical models achieve an additional 0.5 to 2.5 percentual points (PPs) in terms of the forecasting skill. Machine-learning (ML) models achieve 0.9 to 1.9 more PPs compared to a linear regression, indicating that stationarization reveals non-linear patterns in the data. The exception is Random Forest, which underperforms in comparison with the other models. Lastly, the inclusion of solar elevation and azimuth angles as inputs is tested since these are easy to compute and can inform the model on time-dependent patterns. Only the cases where the input is not made stationary, or the underperforming Random Forest model, seem to benefit from this. This indicates that the apparent Sun position data can compensate for the lack of stationarization in the solar inputs and can help the models to differentiate the daily and seasonal variability from the shorter-term, weather-driven variability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3