Recent Advances in Flexible Piezoresistive Arrays: Materials, Design, and Applications

Author:

Xu Shuoyan12,Xu Zigan12,Li Ding12ORCID,Cui Tianrui12ORCID,Li Xin12,Yang Yi12,Liu Houfang12,Ren Tianling123

Affiliation:

1. School of Integrated Circuit, Tsinghua University, Beijing 100084, China

2. Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China

3. Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China

Abstract

Spatial distribution perception has become an important trend for flexible pressure sensors, which endows wearable health devices, bionic robots, and human–machine interactive interfaces (HMI) with more precise tactile perception capabilities. Flexible pressure sensor arrays can monitor and extract abundant health information to assist in medical detection and diagnosis. Bionic robots and HMI with higher tactile perception abilities will maximize the freedom of human hands. Flexible arrays based on piezoresistive mechanisms have been extensively researched due to the high performance of pressure-sensing properties and simple readout principles. This review summarizes multiple considerations in the design of flexible piezoresistive arrays and recent advances in their development. First, frequently used piezoresistive materials and microstructures are introduced in which various strategies to improve sensor performance are presented. Second, pressure sensor arrays with spatial distribution perception capability are discussed emphatically. Crosstalk is a particular concern for sensor arrays, where mechanical and electrical sources of crosstalk issues and the corresponding solutions are highlighted. Third, several processing methods are also introduced, classified as printing, field-assisted and laser-assisted fabrication. Next, the representative application works of flexible piezoresistive arrays are provided, including human-interactive systems, healthcare devices, and some other scenarios. Finally, outlooks on the development of piezoresistive arrays are given.

Funder

National Key R&D Program

National Natural Science Foundation

Guoqiang Institute, Tsinghua University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3