Artificial tactile perception smart finger for material identification based on triboelectric sensing

Author:

Qu Xuecheng1ORCID,Liu Zhuo12ORCID,Tan Puchuan12ORCID,Wang Chan1,Liu Ying13ORCID,Feng Hongqing13,Luo Dan1ORCID,Li Zhou134ORCID,Wang Zhong Lin135ORCID

Affiliation:

1. CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.

2. Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.

3. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.

4. Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.

5. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.

Abstract

Tactile perception includes the direct response of tactile corpuscles to environmental stimuli and psychological parameters associated with brain recognition. To date, several artificial haptic-based sensing techniques can accurately measure physical stimuli. However, quantifying the psychological parameters of tactile perception to achieve texture and roughness identification remains challenging. Here, we developed a smart finger with surpassed human tactile perception, which enabled accurate identification of material type and roughness through the integration of triboelectric sensing and machine learning. In principle, as each material has different capabilities to gain or lose electrons, a unique triboelectric fingerprint output will be generated when the triboelectric sensor is in contact with the measured object. The construction of a triboelectric sensor array could further eliminate interference from the environment, and the accuracy rate of material identification was as high as 96.8%. The proposed smart finger provides the possibility to impart artificial tactile perception to manipulators or prosthetics.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3