Dynamic Crushing Behavior of Ethylene Vinyl Acetate Copolymer Foam Based on Energy Method

Author:

Xing Yueqing1ORCID,Guo Xiya1,Shu Guowei1,He Xiaolong1

Affiliation:

1. College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi’an 710021, China

Abstract

This paper aimed to experimentally clarify the dynamic crushing mechanism and performance of ethylene vinyl acetate copolymer (EVA) and analyze the influence of density and thickness on its mechanical behavior and energy absorption properties under dynamic impact loadings. Hence, a series of dynamic compression tests were carried out on EVA foams with different densities and thicknesses. When the impact energy is 66.64 J, for foam with a density of 150 kg/m3, the maximum contact force, maximum displacement, maximum strain, absorbed energy, and specific energy absorption (SEA) increased by 20 ± 2%, −38.5 ± 2%, −38.5 ± 2%, 4 ± 2%, and 105 ± 2%, respectively, compared to foam with a density of 70 kg/m3. The ratios of absorbed energy to impact energy for different thickness specimens are almost equal. The specimen density has no effect on the efficiency of energy absorption and has a greater effect on the SEA. Meanwhile, when the impact energy-to-thickness ratio is 1680 J/m, compared to foam with a thickness of 30 mm, the maximum contact force, maximum displacement, maximum strain, absorbed energy, and SEA for foam with a thickness of 60 mm increased by 28.5 ± 2%, 211.3 ± 2%, 56.6 ± 2%, 100.8 ± 2%, and 0.4 ± 0.5%, respectively. When the impact energy is 66.64 J, compared to foam with a thickness of 30 mm, the maximum contact force, maximum displacement, maximum stain, absorbed energy, and SEA for foam with a thickness of 60 mm increased by −42.5 ± 2%, 163.5 ± 2%, 31.7 ± 2%, 4.1 ± 2%, and 4.1 ± 2%, respectively. The SEA of two different-thickness EVA specimens is almost equal, about 2.8 J/g. The ratios of absorbed energy to impact energy for different thickness specimens are almost equal, both at 72%. The specimen thickness has no effect on the efficiency of energy absorption and has a greater effect on the maximum contact force. In the range of impact energy, thickness, and density studied, the absorbed energy and SEA are not affected by the thickness of EVA specimens and are determined by the impact energy. The density has no significant effect on the absorbed energy but has a greater effect on the SEA. However, for EVA foams, the greater the density, the greater the mass, and the higher the cost. Taking into account lightweight and cost factors, when optimizing cushioning design within a safe range, we can choose EVA foams with a smaller density and thickness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference30 articles.

1. Properties of chlorinated polyethylene rubber/ethylene vinyl acetate copolymer blend-based foam;Zhang;Polym. Eng. Sci.,2011

2. Research on lightweight EVA sole material;Liu;Plast. Ind.,2009

3. Study on morphology and properties of EVA/OSEP composite foaming Materials;Deng;Funct. Mater.,2013

4. An investigation on the correlation between rheology and morphology of nanocomposite foams based on low-density polyethylene and ethylene vinyl acetate blends;Riahinezhad;Polym. Compos.,2010

5. Characterization of energy absorption properties of EPE and EVA Foaming buffer Materials;Ye;Packag. Eng.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3