Analysis of the Dynamic Cushioning Property of Expanded Polyethylene Based on the Stress–Energy Method

Author:

Xing Yueqing1ORCID,Sun Deqiang1,Chen Guoliang1

Affiliation:

1. College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science & Technology, Xi’an 710021, China

Abstract

This paper aimed to experimentally clarify the dynamic crushing performance of expanded polyethylene (EPE) and analyze the influence of thickness and dropping height on its mechanical behavior based on the stress–energy method. Hence, a series of impact tests are carried out on EPE foams with different thicknesses and dropping heights. The maximum acceleration, static stress, dynamic stress and dynamic energy of EPE specimens are obtained through a dynamic impact test. Then, according to the principle of the stress–energy method, the functional relationship between dynamic stress and dynamic energy is obtained through exponential fitting and polynomial fitting, and the cushion material constants a, b and c are determined. The maximum acceleration-static stress curves of any thickness and dropping height can be further fitted. By the equipartition energy domain method, the range of static stress can be expanded, which is very fast and convenient. When analyzing the influence of thickness and dropping height on the dynamic cushioning performance curves of EPE, it is found that at the same drop height, with the increase of thickness, the opening of the curve gradually becomes larger. The minimum point on the maximum acceleration-static stress curve also decreases with the increase of the thickness. When the dropping height is 400 mm, compared to foam with a thickness of 60 mm, the tested maximum acceleration value of the lowest point of the specimen with a thickness of 40 mm increased by 45.3%, and the static stress is both 5.5 kPa. When the thickness of the specimen is 50 mm, compared to the dropping height of 300 mm, the tested maximum acceleration value of the lowest point of the specimen with a dropping height of 600 mm increased by 93.3%. Therefore, the dynamic cushioning performance curve of EPE foams can be quickly obtained by the stress–energy method when the precision requirement is not high, which provides a theoretical basis for the design of cushion packaging.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference33 articles.

1. Research on Stress–energy Method for Determining Cushioning Curve;Yan;Packag. J.,2014

2. Shock Loading Mitigation Performance and Mechanism of the PE/Wood/PU/Foam Structures;Yang;Int. J. Impact Eng.,2021

3. Comparison and Analysis for Double Direction Performances of Cushioning Materials;Feng;China Packag. Ind.,2007

4. High density polyethylene foams. II. Elastic modulus;Zhang;J. Appl. Polym. Sci.,2003

5. Compressive strength study of cement mortars lightened with foamed HDPE nanocomposites;Rosa;Mater. Des.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3