Wearable Pressure Sensor Using Porous Natural Polymer Hydrogel Elastomers with High Sensitivity over a Wide Sensing Range

Author:

Xiao Fan1,Jin Shunyu2,Zhang Wan1,Zhang Yingxin1,Zhou Hang3,Huang Yuan1

Affiliation:

1. School of Microelectronics Science and Technology, Sun Yat-Sen University, Guangzhou 510275, China

2. Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

3. School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China

Abstract

Wearable pressure sensors capable of quantifying full-range human dynamic motionare are pivotal in wearable electronics and human activity monitoring. Since wearable pressure sensors directly or indirectly contact skin, selecting flexible soft and skin-friendly materials is important. Wearable pressure sensors with natural polymer-based hydrogels are extensively explored to enable safe contact with skin. Despite recent advances, most natural polymer-based hydrogel sensors suffer from low sensitivity at high-pressure ranges. Here, by using commercially available rosin particles as sacrificial templates, a cost-effective wide-range porous locust bean gum-based hydrogel pressure sensor is constructed. Due to the three-dimensional macroporous structure of the hydrogel, the constructed sensor exhibits high sensitivities (12.7, 5.0, and 3.2 kPa−1 under 0.1–20, 20–50, and 50–100 kPa) under a wide range of pressure. The sensor also offers a fast response time (263 ms) and good durability over 500 loading/unloading cycles. In addition, the sensor is successfully applied for monitoring human dynamic motion. This work provides a low-cost and easy fabrication strategy for fabricating high-performance natural polymer-based hydrogel piezoresistive sensors with a wide response range and high sensitivity.

Funder

National Natural Science Foundation of China

Zinergy Shenzhen Ltd.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3