Self‐Powered Nanofluidic Pressure Sensor with a Linear Transfer Mechanism

Author:

Yue Yang12,Liu Nishuang1ORCID,Su Tuoyi1,Cheng Yongfa1,Liu Weijie13,Lei Dandan1,Cheng Feng12,Ge Binghui2,Gao Yihua1

Affiliation:

1. School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO) Huazhong University of Science and Technology (HUST) Wuhan 430074 P. R. China

2. Information Materials and Intelligent Sensing Laboratory of Anhui Province Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Institutes of Physical Science and Information Technology Anhui University Hefei 230601 P. R. China

3. Key Laboratory of Material Physics Ministry of Education School of Physics and Microelectronics Zhengzhou University Zhengzhou 450001 P. R. China

Abstract

AbstractThe transfer functions of the widely used pressure sensors do not exhibit the desired linearity, which limits their practicability in many fields, such as the Internet of Things and artificial intelligence. Herein, MXene/cellulose nanofiber composite membrane‐based linear nanofluidic pressure sensors are demonstrated. The nanoscale gaps between MXene laminates restrict the movement of electrolyte and realize the selective transport of ions, based on which mechanical signals can be converted into electric energy for self‐powering. In particular, the generated voltage and current are directly proportional to the applied pressure. The introduction of high‐strength cellulose nanofibers not only expands the detection range of the sensor but also achieves continuous adjustment of the nano‐gap between MXene laminates, which optimizes the sensitivity of the device. The feasibility of further optimization through the modulation of surface functional groups, electrolyte concentration, and device assembly method is proposed. This 2D nanofluid pressure sensor provides an important approach to manufacture portable and wearable electronic devices for applications in many fields.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3