Affiliation:
1. State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun 130012 P. R. China
2. School of Public Health Jilin University Changchun 130021 P. R. China
3. Ice and Snow Tourism Resorts Equipment and Intelligent Service Technology Ministry of Culture and Tourism Key Laboratory Jilin University Changchun 130012 P. R. China
Abstract
AbstractThe wide range of pressure detection and the exceptional linearity are essential performance parameters for flexible pressure sensors, enabling them to adapt to diverse scenarios and acquire information accurately. However, currently available “ultra‐wide range” piezoresistive sensors lack an optimal solution that effectively balances sensing properties, device thickness, and process cost. This study proposes a distinctive approach by introducing a Janus conductive structure assembled with dual resistive sensitive layers. The design allows for a pressure‐induced staged transformation of the current transport path, effectively mitigating variations and saturation in sensor resistance over a wide pressure range. The resulting piezoresistive sensor demonstrates an unprecedented detection range of 0–3800 kPa, showcasing remarkable sensitivity of 4.11 kPa−1 and outstanding linearity of 99.9% within the range of 0–1000 kPa. Additionally, the sensor boasts a thickness of only ≈200 µm, made possible through the utilization of a cellulose nanofibers material matrix. These performance achievements stand at the forefront when compared to existing reports. This research explores the potential applications of these sensors and extended arrays in the domains of human health and motion monitoring. It investigates their utility in gait analysis for assisted posture correction, as well as in the assessment and rehabilitation of gait instability.
Funder
China Postdoctoral Science Foundation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献