The Effect of Dual-Modification by Heat-Moisture Treatment and Octenylsuccinylation on Physicochemical and Pasting Properties of Arrowroot Starch

Author:

Marta Herlina1ORCID,Rismawati Ari1ORCID,Soeherman Giffary Pramafisi2ORCID,Cahyana Yana1ORCID,Djali Mohamad1,Yuliana Tri1ORCID,Sondari Dewi3

Affiliation:

1. Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia

2. Department of Agroindustry Technology, Lampung State Polytechnic, Lampung 35141, Indonesia

3. Research Center for Biomass and Bioproducts, Cibinong Science Center, National Research and Innovation Agency, Cibinong 16911, Indonesia

Abstract

Starch is widely applied in various industrial sectors, including the food industry. Starch is used as a thickener, stabilizer, or emulsifier. However, arrowroot starch generally has weaknesses, such as unstable under heating and acidic conditions, which are generally applied to processing in the food industry. Modifications were applied to improve the characteristics of native arrowroot starch. In this study, arrowroot starch was modified by heat-moisture treatment (HMT), octenylsuccinylation (OSA), and dual modification between OSA and HMT in a different sequence––namely, HMT followed by OSA, and OSA followed by HMT. This study aims to determine the effect of different modification methods on the physicochemical and functional properties of native arrowroot starch. The result shows that both single HMT and dual modification caused damage to native starch granules, such as the formation of cracks and roughness. For single OSA treatment, especially, there is no significant change in granule morphology after modification. All modification treatments did not change the crystalline type of starch but reduced the RC of native starch. Both single HMT and dual modifications (HMT-OSA, OSA-HMT) increased pasting temperature and setback, but, conversely, decreased the peak and the breakdown viscosity of native starch, whereas single OSA had the opposite trend compared with the other modifications. HMT played a greater role in increasing the thermal stability and the retrogradation ability of arrowroot starch. Both single modifications (HMT and OSA) increased the hardness and gumminess of native starch, and the opposite was true for the dual modifications. HMT had a greater effect on color characteristics, where the lightness and whiteness index of native arrowroot starch decreased. Single OSA modification increased swelling volume higher than dual modification. Both single HMT and dual modifications increased water absorption capacity and decreased the oil absorption capacity of native arrowroot starch.

Funder

Ministry of Education, Culture, Research, and Technology (MoECRT), Republic of Indonesia

Universitas Padjadjaran

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3