Influence of 3D Printing Conditions on Some Physical–Mechanical and Technological Properties of PCL Wood-Based Polymer Parts Manufactured by FDM

Author:

Beșliu-Băncescu Irina1,Tamașag Ioan1ORCID,Slătineanu Laurențiu2

Affiliation:

1. Faculty of Mechanical Engineering, Automotive and Robotics, “Stefan cel Mare” University, 720229 Suceava, Romania

2. Faculty of Machine Manufacturing and Industrial Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iași, Romania

Abstract

The paper investigates the influence of some 3D printing conditions on some physical–mechanical and technological properties of polycaprolactone (PCL) wood-based biopolymer parts manufactured by FDM. Parts with 100% infill and the geometry according to ISO 527 Type 1B were printed on a semiprofessional desktop FDM printer. A full factorial design with three independent variables at three levels was considered. Some physical–mechanical properties (weight error, fracture temperature, ultimate tensile strength) and technological properties (top and lateral surface roughness, cutting machinability) were experimentally assessed. For the surface texture analysis, a white light interferometer was used. Regression equations for some of the investigated parameters were obtained and analysed. Higher printing speeds than those usually reported in the existing literature dealing with wood-based polymers’ 3D printing had been tested. Overall, the highest level chosen for the printing speed positively influenced the surface roughness and the ultimate tensile strength of the 3D-printed parts. The cutting machinability of the printed parts was investigated by means of cutting force criteria. The results showed that the PCL wood-based polymer analysed in this study had lower machinability than natural wood.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3