Heat Treatment Effect on Some Mechanical Properties of FDM‐Manufactured PCL Wood‐Based Biopolymer

Author:

Beșliu-Băncescu IrinaORCID,Tamașag IoanORCID

Abstract

The study investigates some 3D printing output parameters of a polycaprolactone (PCL) wood‐based biopolymer, a category of materials obtained by embedding wood‐derived components within polymeric matrices. These wood‐based biopolymers have garnered significant focus in recent years due to their environmental friendliness and vast potential across many different fields. A full factorial design with three independent variables (layer height, printing speed, and heat treatment exposure time) at three levels was considered. The research explores printing speeds higher than the speed ranges typically investigated in the existing scientific literature on FDM 3D printing of wood‐based polymers. Additionally, in this study, heat treatment is proposed as a post‐processing operation to enhance certain crucial proprieties such as surface quality, hardness, mechanical strength, and accuracy. The findings reveal that heat treatment has a positive influence on the investigated output parameters. Notably, 3D printed samples subjected to heat treatment exhibit an average decrease of 112.1% in surface roughness for a 5‐min exposure time and 121.73% for a 10‐min exposure time. The surface hardness of the samples also improved after applying the heat treatment. The part hardness improved with an average of 0.65%. Furthermore, significant correlations were observed between layer height and surface quality, hardness, printing speed, and tensile strength. Notably, printing speed contributed significantly to the variation in tensile strength, accounting for 52.77% of the parameter’s variation. These insights shed light on the optimization of 3D printing processes for wood‐based biopolymers, paving the way for enhanced performance and applicability across diverse fields.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3