Abstract
Abstract
The capacity of adaptability of a three-dimensional-printed composite of polycaprolactone-based containing micro-particles of ferromagnetic shape memory alloy of composition Ni45Mn36.7In13.3Co5 was determined. Composites exhibit an increase in both damping and modulus values up to around 11%, at temperatures close to 325 K, when applying a magnetic field of 120 kA m−1. In addition, composites show also an increase in the damping values of around 50% at temperatures near 333 K, related to the martensitic transformation, which is promoted by an increase in the oscillating strain from 0.5 × 10−4 up to 2 × 10−4 and when applying a magnetic field of 120 kA m−1. Moreover, the maximum temperature of use of the composite can be increased by means of a magnetic field. These adaptability qualities make this functional composite attractive, for the vibration control at elevated temperatures as well as the potential applications in magnetocaloric devices.
Funder
Consejo Nacional de Investigaciones Científicas y Técnicas
Agencia Estatal de Investigación (AEI), Ministerio de Ciencia e Innovación
Universidad Nacional de Rosario