eDNA-Based Early Detection Illustrates Rapid Spread of the Non-Native Golden Mussel Introduced into Beijing via Water Diversion

Author:

Guo Wei1,Li Shiguo23ORCID,Zhan Aibin23ORCID

Affiliation:

1. Beijing Hydrology Center, Beijing 100089, China

2. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

3. University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China

Abstract

The world’s largest water diversion, the South-to-North Water Transfer Project (SNWTP) in China, has created an “invasion highway” to introduce invasive golden mussels (Limnoperna fortunei) from the Yangtze River basin to Beijing. To examine the spread and colonization patterns of this newly introduced invasive species, we conducted comprehensive environmental DNA (eDNA)-based early detection and conventional field surveys across all water bodies in five river basins in Beijing from 2020 to 2023. Our results indicated a rapid spread over the past four years. Among the 130 tested sites, the number of sites with positive signals from eDNA analysis exhibited an annual increase: Commencing with four infested sites identified through field surveys in 2019, eDNA analysis detected an additional 13, 11, and 10 positive sites in 2020, 2021, and 2022, respectively, and a substantial rise comprising an additional 28 sites in 2023. Conventional field surveys detected mussels 1–3 years later than eDNA-based analysis at 16 sites. Across all 16 sites, we detected a low population density ranging from 1 to 30 individuals/m2. These findings collectively indicate that the invasions by golden mussels in Beijing are still in their early stages. To date, golden mussels have successfully colonized four out of the five investigated river basins, including the Jiyun River (22.2% positive sites), North Canal River (59.6% positive sites), Chaobai River (40% positive sites), and Yongding River (63.6% positive sites), with the North Canal River and Yongding River being the most heavily infested. Currently, only the Daqing River basin remains uninfested. Given the significant number of infested sites and the ongoing transport of large new propagules via SNWTP, further rapid spread and colonization are anticipated across aquatic ecosystems in Beijing and beyond. Consequently, we call for the proper implementation of effective management strategies, encompassing early detection, risk assessment, and the use of appropriate control measures to mitigate the potential ecological and economic damages in invaded ecosystems.

Funder

Youth Innovation Promotion Association, Chinese Academy of Sciences

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3