Understanding and classifying the raw water transfer invasion pathway

Author:

Waine AvaORCID,Robertson Peter,Pattison Zarah

Abstract

AbstractRaw Water Transfer (RWT) schemes move large volumes of freshwater between separate waterbodies to supply water as a specific commodity. Water is translocated by complex purpose-built networks of pipelines, tunnels and water supply canals. RWTs form hydrological connections between waterbodies across various spatial scales, and create a pathway of introduction and spread for a diverse range of invasive non-native species (INNS). Though occurring globally in large numbers, RWTs are not currently well represented by the standard pathway classification framework adopted by the Convention on Biodiversity (CBD). At present, RWTs are included within the ‘corridor’ category, which denotes the natural spread of organisms to neighbouring regions through transport infrastructure i.e. navigable canals/artificial waterways. However, RWTs are not routes for vehicle transport, and species are translocated between often non-adjoining waterbodies by the intentional transfer of water, not via natural spread. We provide a background for the complex RWT pathway and evidence of INNS spread through RWT schemes globally, and explore several options for improved RWT classification within the CBD framework—we recommend that the current corridor category is modified slightly to accommodate the addition of RWTs as a distinct sub-category, as separate from a clearly defined ‘navigable canal/artificial waterways’ sub-category. Accurate classification will increase understanding and awareness of this high-risk pathway, and support much-needed insight into its distinct stakeholders and drivers. Further, delineating RWTs from navigable canals/artificial waterways will help to identify widespread opportunities for pathway management and policy development, in addition to supporting more accurate future assessments of the risks and economic costs of the corridor pathway category.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3