Multilabel Genre Prediction Using Deep-Learning Frameworks

Author:

Unal Fatima Zehra1,Guzel Mehmet Serdar1ORCID,Bostanci Erkan1ORCID,Acici Koray2ORCID,Asuroglu Tunc3ORCID

Affiliation:

1. Department of Computer Engineering, Ankara University, 06830 Ankara, Turkey

2. Department of Artificial Intelligence and Data Engineering, Ankara University, 06830 Ankara, Turkey

3. Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland

Abstract

In this study, transfer learning has been used to overcome multilabel classification tasks. As a case study, movie genre classification by using posters has been chosen. Six state-of-the-art pretrained models, VGG16, ResNet, DenseNet, Inception, MobileNet, and ConvNeXt, have been employed for this experiment. The movie posters have been obtained from Internet Movie Database (IMDB). The dataset has been divided using an iterative stratification technique. A sequence of dense layers has been added on top of each model and these models have been trained and fine-tuned. All the results of the models compared considered accuracy, loss, Hamming loss, F1-score, precision, and AUC metrics. When the metrics used were evaluated, the most successful result regarding accuracy has been obtained from the modified DenseNet architecture at 90%. Also, the ConvNeXt, which is the newest model among all, performed quite satisfactorily, reaching over 90% accuracy. This study uses an iterative stratification method to split an unbalanced dataset which provides more reliable results than the classical splitting method which is the common method in the literature. Also, the feature extraction capabilities of the six pretrained models have been compared. The outcome of this study shows promising results regarding multilabel classification. As for future work, it is planned to enhance this study by using natural language processing and ensemble methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3